IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015 1

Boafft: Distributed Deduplication for Big Data
Storage in the Cloud

Shengmei Luo, Guangyan Zhang, Chengwen Wu, Samee U. Khan, Senior Member, IEEE,
and Keqin Li, Fellow, IEEE

Abstract—As data progressively grows within data centers, the cloud storage systems continuously face challenges in saving storage
capacity and providing capabilities necessary to move big data within an acceptable time frame. In this paper, we present the Boafft, a
cloud storage system with distributed deduplication. The Boafft achieves scalable throughput and capacity using multiple data servers
to deduplicate data in parallel, with a minimal loss of deduplication ratio. Firstly, the Boafft uses an efficient data routing algorithm
based on data similarity that reduces the network overhead by quickly identifying the storage location. Secondly, the Boafft maintains
an in-memory similarity indexing in each data server that helps avoid a large number of random disk reads and writes, which in turn
accelerates local data deduplication. Thirdly, the Boafft constructs hot fingerprint cache in each data server based on access frequency,
so as to improve the data deduplication ratio. Our comparative analysis with EMC’s stateful routing algorithm reveals that the Boafft
can provide a comparatively high deduplication ratio with a low network bandwidth overhead. Moreover, the Boafft makes better usage
of the storage space, with higher read/write bandwidth and good load balance.

Index Terms—Big data, cloud storage, data deduplication, data routing, file system.

1 INTRODUCTION

URRENTLY, the enterprise data centers manage PB or
C even EB magnitude of data. The data in those cloud s-
torage systems (e.g., GFS [1], HDFS [2], Ceph [3], Eucalyptus
[4], and GlusterFS [5]) that provide a large number of users
with storage services are even larger. The cost of enterprise
data storage and management is increasing rapidly, and the
improvement of storage resource utilization has become a
grand challenge, which we face in the field of big data storage.
According to a survey, about 75% data in the digital world are
identical [6], and especially the data redundancy in backup and
archival storage systems is greater than 90% [7]. The technique
of data deduplication can identify and eliminate duplicate data
in a storage system. Consequently, the introduction of data
deduplication into cloud storage systems brings an ability to
effectively reduce the storage requirement of big data and
lower the cost of data storage.

Data deduplication replaces identical regions of data (files
or portions of files) with references to data already stored
on the disk. Compared with the traditional compression tech-
niques, data deduplication can eliminate not only the data
redundancy within a single file, but also the data redundancy
among multiple files. However, to find redundant data blocks,
deduplication has to make content comparison among a large

e S. Luo, G. Zhang and C. Wu are with Department of Computer
Science and Technology, Tsinghua University, Beijing 100084,
China; email: luo.shengmei@zte.com.cn, gyzh@tsinghua.edu.cn,
wew 14 @mails.tsinghua.edu.cn.

o S. Khan is with Department of Electrical and Computer Engineering, North
Dakota State University, USA; email: samee.khan@ndsu.edu.

o K. Li is with Department of Computer Science, State University of New
York, New Paltz, New York 12561, USA; email: lik@newpaltz.edu.

Manuscript received December 22, 2012, [revised April 1, 2013; accepted July
1, 2013; published online January 27, 2014.

amount of data. Deduplication is both computation-intensive
and I/O-intensive, which easily has a negative impact on the
performance of data servers. To reduce this negative impact of
data deduplication, an attractive approach is to implement it
in parallel by distributing the computational and I/O tasks to
individual nodes in a storage cluster. The aforementioned can
be achieved by utilizing the computation capability and storage
capacity of multiple nodes in cloud storage can solve the
bottleneck of data deduplication and improve the throughput
of data storage.

One of technical challenges with regards to distributed
data deduplication is to achieve scalable throughput and a
system-wide data reduction ratio close to that of a centralized
deduplication system. By querying and comparing the entire
data globally, we can achieve the best data deduplication ratio.
However, it is required to maintain a global index library. Both
index data updates and duplicate data detection will cause
network transmission overheads. Therefore, such a global
deduplication will have a severe performance degradation,
especially in a cloud storage system with hundreds of nodes.
An alternative approach is a combination of content-aware data
routing and local deduplication. When using this approach, one
will face the challenge of designing a data routing algorithm
with low computing complexity and high deduplication ratio.

In this paper, we present Boafft', a cloud storage system
with distributed deduplication. Boafft creates super-chunks
that represent consecutive smaller data chunks, then routes
super-chunks to nodes according to data content, and finally
performs local deduplication at each node. Boafft uses an
efficient data routing algorithm based on data similarity that
reduces the overhead of network bandwidth and calculates
the storage location of data quickly. For a data set, multiple

1. an abbreviation of “Birds of a feather flock together”.

www.manaraa.com

representative fingerprints, instead of only one fingerprint, are
used to find more similarity in datasets. The data routing
algorithm leverages data similarity to enable superblocks with
high similarity to co-locate in the same data server, where
Boafft performs local data deduplication. This provides a min-
imal loss of deduplication ratio, while reducing the network
overhead.

Moreover, Boafft accelerates data routing and local data
deduplication by two key technologies. First, Boafft constructs
hot fingerprint cache in each data server based on access
frequency, which accelerates data routing and guarantees data
deduplication ratio by leverage of data locality. Second, Boafft
maintains an in-memory similarity index table in each data
server that aids in avoiding a large number of random disk
reads and writes, and in turn accelerates local data deduplica-
tion.

We implement the Boafft prototype by modifying the
source code of the widely-used Hadoop distributed file system
(HDFS). Our results from detailed experiments using data
center traces show that Boafft achieves scalable 1/O throughput
using multiple storage nodes to deduplicate in parallel, with
a minimal loss of deduplication ratio. Compared with the
EMC’s stateful routing algorithm, the Boafft can provide a
comparatively high deduplication ratio with a low network
bandwidth overhead. Moreover, the Boafft can achieve better
storage space utilization, with higher read/write bandwidth and
good load balance.

The rest of this paper is organized as follows. Section 2
discusses related work, then Section 3 describes an overview
of our Boafft system. Section 4 focuses on data routing for
distributed deduplication, and Section 5 depicts how local
deduplication is performed within a single data server. We
present our experimental methodology, datasets, and the cor-
responding experimental results in Section 6. Finally, conclu-
sions are presented in Section 7.

2 RELATED WORK

Commonly used lossless compression algorithms include
Huffman coding [8], Lempel_ziv [9], and Range encoding
[10]. For example, the design of DEFLATE [11] algorithm
that was applied in the Gzip compression software, is based
on the two lossless compression algorithms of Lempel and
Huffman.

For data deduplication, the granularity is the key factor that
determines the deduplication ratio. Currently, there are four
main granularities in deduplication, namely: file, data block,
byte, and bit. File granularity deduplication [12] systems,
such as FarSite system [13] and EMC Center System [14]
perform data deduplication by judging whether the whole file
is identical. File granularity deduplication can only deduplicate
when the files are identical, but cannot deduplicate redundant
data blocks within a file. Although deduplication with data
block, byte, or bit granularity can deduplicate within a file, it
does utilize more system resources.

Invtermsvof vdatavblockvpartitioninigyithere are two main
techniques, namely: fixed-sized partitioning [15] and content-
defined chunking [15]. OceanStore [16] and Venti [17] are

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

based on fixed-sized partitioning. Content-defined chunking,
which is a content based method, partitions data into data
blocks with variable size by using sliding window and Rabin’s
fingerprint algorithm [18]. Consequently, it can achieve a
higher deduplication ratio, which is the primary reason for
its widespread adoption in many systems, such as LBFS [19],
Pastiche [20], Extreme Binning [21], EMC Cluster Deduplica-
tion [22], and Deep Store [23]. Apart from the aforementioned
algorithms, some researchers proposed many other partitioning
algorithms based on the features of dataset, such as TTTD
[24], ADMAD [25], Fingerdiff [26], and Bimodal CDC [27].

In the process of deduplication, the judgment of redundant
data blocks is based on the search and match of fingerprints.
Therefore, the optimization of indexing and querying is an
effective way to improve the I/O performance and reduce
the bottleneck of disk search in deduplication systems. There
are three main methods to optimize the data block index.
The first method is the optimization strategy based on data
locality. For example, in the design of DDFS [28], Zhu et al.
proposed summary vector, stream-informed segment layout,
and locality-preserved caching, which are based on locality to
reduce the number of disk I/O and improve cache hit ratio to
optimize the process of data block index and query. However,
with the increase of the scale of storage, a lot of system
resources are required. Therefore, the methodology tends to
be used in a one-node system. The second method is based
on data similarity. For example, DDFS [28] uses the technique
of Bloom Filter [29] to reduce the size of data index table.
Lillibridge et al. proposed sparse indexing [30], which samples
data blocks based on similarity to reduce the amount of data
to be indexed and queried, and then deduplicates those data
segments with higher similarity. The HP’s extreme binning
strategy [21] is also based on data similarity that eliminates
the bottleneck of disk in the process of index querying. Based
on Broder’s theory of min-wise independent permutations [31],
it determines weather two files are similar by comparing their
minimum fingerprint. This method uses a two-level indexing,
so each data block query only costs a disk access, which
reduces the number of index query. The third method is based
on the SSD’s index. Due to better performance of the SSDs
on random reads, storing the index of fingerprints and file’s
Metadata in the SSD can accelerate the query. For example,
Microsoft Research proposed ChunkStash [32] that stores data
block’s index within the SSD to improve system throughput.

The construction of a large-scale, high performance, dis-
tributed deduplication system needs to take various factors
into consideration, such as system’s global deduplication,
single node’s throughput, data distribution, and scalability. It is
noteworth to mention that the system overhead, deduplication
ratio, and scalability are all interdependent as well. The EMC’s
Data Domain [33] global deduplication array has a good
scalability in a small-scale cluster, but the deduplication ratio,
I/O throughput, and communication overheads are the major
drawbacks. Nippon Electric Company’s (NEC) HYDRAstor
[34] distributes data by distributed hash tables (DHT). The
HYDRAstor distributes data blocks to different virtual super
node according to the fingerprint. Thereafter, data deduplicates
in each of the virtual super node. Consequently, it can scale

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 3

out a storage system quickly. However, it cannot maintain data
locality due to the size of the 64KB data block granularity.

Extreme binning utilizes file similarity to perform stateless
routing. First, it selects the minimum fingerprint in the file
as its characteristic fingerprint, according to Broder’s theory
of min-wise independent permutations. Thereafter, it routes
the files that are similar to the same deduplication server to
deduplicate. Although extreme binning can keep its system
performance and scalability in a large-scale cluster, since
its granularity is file, it can only perform well when data
locality is good. Dong et al. [22] proposed a solution for high
performance deduplication cluster, which takes super-chunk
as its granularity to improve overall system routing efficiency.
Besides, they presented stateless and stateful routing strategies
based on super-chunk. Stateless strategy uses conventional
DHT to route super-chunk, which has good load balance in
a small cluster. But in a large-scale cluster, it is hard to keep
load balance, and its deduplication ratio is comparatively low.
While stateful strategy matches the super-chunk’s fingerprint
with stored fingerprints in all nodes according to the index
table, with the consideration of load balance, it determines the
route with a good deduplication ratio in the node. The stateful
strategy can avoid imbalance and achieve a good deduplication
performance, but it has an increased cost in computation,
memory and communication, especially when the storage scale
grows rapidly.

Frey et al. proposed a probabilistic similarity metric [35]
that identifies the nodes holding the most chunks in common
with the superblock being stored. By introducing this metric,
the computational and memory overheads of stateful routing
at the superblock granularity can be minimized. As some
workloads express poor similarity and some others may have
poor locality, some systems (e.g. DDFS, ChunkStash) can only
perform well when workloads exhibit good locality, and others
(e.g. Extreme Binning) can do well only when workloads
have good similarity. Based on this observation, SoLi [36]
exploits both similarity (by grouping strongly correlated small
files into a segment and segmenting large files) and locality
(by grouping contiguous segments into blocks) in backup
streams to achieve near-exact deduplication. However, it only
addresses the intra-node challenge of single deduplication
server. »_-Dedupe [37] leverages data similarity and locality to
make a sensible tradeoff between high deduplication ratio and
high performance scalability for cluster deduplication. Some
other deduplication systems focus on offline deduplication,
such as DEBAR [38] and ChunkFarm [39]. These two systems
split data partitioning and signature calculations from the
global index lookup, and update operations in parallel, and
batch access to the index.

3 OVERVIEW OF THE BOAFFT

The Boafft is a cluster-based deduplication system that is
built on a distributed storage system, where each data server
has not only storage capacity but also certain computational
capability:Firstyrtorbetter utilizenthercluster’s capability, data
servers perform local data deduplication in parallel that guar-
antees overall system performance and storage bandwidth in

cloud storage environments. Second, each client sends those
data with high data similarity to the same data server by
using an efficient routing algorithm based on data similarity,
which ensures the high global deduplication ratio. Finally, we
optimize the storage of fingerprint index, reduce the index
query overhead, and achieve a good deduplication ratio in
a single node, by implementing similarity index querying,
storage container caching, and hot fingerprint cache.

3.1 Theoretical Basis

Boafft uses MinHash (or the min-wise independent permuta-
tions locality sensitive hashing scheme) [31] [41] to quick-
ly estimate how similar two superblocks are. The Jaccard
similarity coefficient [40] is a commonly used indicator of
the similarity between two sets. As shown in Equation (1),
the Jaccard similarity coefficient is defined as the size of the
intersection divided by the size of the union of the sample
sets.

_1anB

AU B|
According to min-wise independent permutations, we get
Equation (2). Here, Let h be a hash function that maps the
members of A and B to distinct integers, and for any set .S de-
fine Aypin (S) to be the member 2 of S with the minimum value
of h(x). That is, the probability that h,n(A) = hmin(B) is
true is equal to the similarity J(A, B), assuming randomly
chosen sets A and B.

sim(A, B) = J(A, B)

(D

Pr{hmin(A) = hpmin(B)] = J(A, B) 2)
Then, we have a result as expressed in Equation (3).
stm(A, B) = Prlhmin(A) = hpmin(B)] 3)

If r is the random variable that is one when f,,;,(A4) =
himin(B) and zero otherwise, then 7 is an unbiased estimator
of J(A, B). r is too high a variance to be a useful estimator for
the Jaccard similarity on its own — it is always zero or one.
The idea of the MinHash scheme is to reduce this variance by
averaging together several variables constructed in the same
way. As a result, we use the k representative fingerprints of
a data set, by calculating minimal fingerprints of its k£ data
subsets, to find more similarity in datasets. In Section 6.3.1,
we discuss the effect of different &£, and how to select & in
reality.

3.2 System Architecture

Figure 1 demonstrates the architecture design of Boafft. Log-
ically, the system is composed of clients, a metadata server
and data servers. A out-of-band distributed file system is
built on those data servers and the metadata server. Clients
interact to those servers via network connection to perform
data deduplication.

The main function of clients is to provide interactive in-
terfaces. Clients perform data preprocessing for data dedu-
plication, e.g., data block partitioning, fingerprint extraction,

www.manaraa.com

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

Client Client Client

Data Data Data
Preprocessing Preprocessing

= TN
o o H | .
= K > Data Routing |
> J

Preprocessing

Strategy

a
quidjosury

~ -

zdL wdL =

DataServer

Z

Fingerprint
Data
Container

MetaDataServer

il

M ent

Log
Management

Cluster

Fingerprint;
Data
Container

Fingerprint Fingerprint,
Data Data
Container Container

i

Fig. 1: Architecture of the Boafft system.

organization of data into superblocks. Clients get the routing
address of a superblock by interacting with the data servers
in the distributed file system, and then send the data and the
corresponding fingerprints to the selected data server.

The metadata server mainly handles the storage of meta-
data, the management and maintenance of the cluster. More
specifically, it manages the process of data storage, maintains
and manages the whole metadata in the distributed file system
and its storage status, guides the data routing and maintains
system load balance.

A data server performs local data deduplication, and the
storage and the management of data. A data server commu-
nicates with clients via network to update the status of data
reception and node’s storage asynchronously. When receiving
a write request, a data server is responsible for receiving
and deduplicating the data within the node, and constructing
corresponding index association of the fingerprint. In addition
to that, a data server needs to build a connection between
fingerprint and data blocks, index data block’s fingerprint, map
the file and data blocks, and use the container to manage the
storage of data and fingerprint.

The network communication module provides clients with a
highly efficient communication to the nodes in the distributed
file system. In detail, the communication exists among clients,
the metadata server, and data servers. The main way to conduct
those communications is Remote Procedure Call (RPC), by
which the metadata and a small amount of control information
can be exchanged. Moreover, the transmission of large quantity
of data and fingerprints can be done by a stream socket.

3.3 Work Flow

Boafft’s work procedure is shown in Figure 2. Initially, a
client partitions the write data stream into multiple chunks,
calculates a fingerprint for each chunk, and organizes them
into superblocks for data routing. To get the routing address
for a superblock, Boafft selects a chunk fingerprint as the
feature fingerprint of the superblock, and interacts with the
data routing engine of the metadata server. Finally, the client
sends the superblock to the corresponding data server for
storage and processing.

The metadata server preserves the whole session, and man-
ages the cluster. To assign a routing address for a superblock,

Client
Data Pre—process

‘ Read Data }—»‘ Chunking ‘ D:I:‘jj
* Chunk I0 stream
AR

Chunk 10 stream with fp

‘ Fingerprinting ‘

SuperBlock

Simi larty signatures
\

* MetaDataServer

Routing |pata Routing Engine

77

MetaData

v Deduplication Engine
Load Similiarity L
Container Matedata "

AR u

Similiarity index subset —
—

Disks

[T 1] L}

>} Data and metaData Storage ‘

Redundancy
elimination

Dedup data

Fig. 2: Work flow of the Boafft system.

it uses a local similarity routing algorithm to determine the
best storage node. Meanwhile, we need to take a thorough
consideration of storage status of each data server and query
results in the process, which require us to select the target
node dynamically to balance the storage utilization among data
servers, so that the system’s storage can be balanced.

Boafft only performs local data deduplication within a
single data server. On the basis of data similarity and data
locality, Boafft uses self-describing containers to store and
manage data and fingerprints. Containers are self-describing in
that a metadata section includes the segment descriptors for the
stored segments. When a superblock arrives at a data server,
the data server loads the fingerprints of the best matched
container according to the similarity index, and organizes them
into a subset of the similarity index. The Boafft will then
compare the superblock with the subset of similarity index for
data deduplication, which is able to avoid large mount of I/O
operations. Therefore, the overhead of fingerprint query can
be decreased greatly. Although this will lower deduplication
ratio to some extent, it can get a great promotion in terms of
I/O throughput. In addition, to overcome the problem of lower
deduplication ratio when only matching similar containers, we
design a strategy of container cache and fingerprint index to
optimize the index query, and improve the deduplication ratio
from the aspect of data stream locality.

4 DATA ROUTING FOR DISTRIBUTED DEDUP

The Boafft’s data routing algorithm is based on the similarity
of data, with which a superblock is sent to the corresponding
data server according to their content. The goal of the data
routing algorithm is to make superblocks with high similarity
co-locate in the same data server, where Boafft performs
local data deduplication. Boafft selects superblock’s feature
fingerprint by sampling, and completes the data routing by

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 5

using stateful routing. In this manner, the improvement of
deduplciation ratio can be achieved, while the performance
of the storage cluster can be guaranteed.

4.1 Routing Granularity

A granularity of data routing determines a tradeoff between
throughput and capacity reduction ratio. Taking small chunk
as routing granularity can improve the deduplication ratio but
will decrease overall system throughput. While taking a file as
routing granularity will make a great decrease in deduplication
ration, and will cause imbalance of data distribution among
data servers. Boafft takes superblock as its basic unit of data
routing. When uploading a file, Boafft uses a partitioning al-
gorithm to divide a file into many small chunks. A superblock
is made up of a number of continuous chunks. In this way,
a file is splitted into some continuous superblocks, and then
take superblock as a basic routing unit, which is sent to the
selected data server to deduplicate.

The selection of the superblock size is the key factor that
affects deduplicaiotn ratio and system performance. Through
the experiments on actual datasets, we found that when the su-
perblock size varies between 4M and 16M, the write efficiency
of data stream and the system throughput can be improved,
while the deduplication ratio of system can be ensured as
well. Refer to the section of experimental evaluation for more
details. Moreover, taking a superblock as the granularity of
data routing will partition a data stream into some superblocks
that will be sent to different data servers, by which we can
utilize computing resources of a cluster efficiently and satisfy
the applications’ demands of parallel processing on big data in
the cloud storage system. Besides, it can keep the data locality,
improve the performance of read/write, reduce the overhead
of network communication, and avoide the problem of data
distribution skew when routing a whole file. Besides, we can
achieve good deduplication ratio.

4.2 Choosing Feature Fingerprint

In the process of data routing, we assume the incoming data
streams have been divided into chunks with a content-based
chunking algorithm, and the fingerprint has been computed
to identify each chunk uniquely. The main task of data
routing is to quickly determine the target data server where an
incoming chunk can be deduplicated efficiently. Sending all
chunk fingerprints to all data servers for matching will cause
huge network overhead. Moreover, it is unrealistic to load all
fingerprints into memory in a data server, which will cause a
large amount of disk I/Os, and degrading system performance
severely. The Boafft takes feature fingerprints for data routing,
which was sampled from the data to be routed. Therefore,
the Boafft uses similarity matching instead of globally exact
matching.

The process of selecting a feature fingerprint for a su-
perblock is shown in Figure 3. The Boafft divides a superblock
into multiple segments based on the principle of fixed size
orrequalvnumberrof 'chunksiEveryrsegment was composed
by some continuous chunks, and the segment is taken as a
unit when selecting a representative fingerprint. According

[7S£eraocik'7sL:gial Partitions

Segment Segment Segment Segment

10 Stream

SuperBlock” s
Characteristic Fp set

LSeleciing segment’ s representative Fp (min-hash) ‘

Fig. 3: The procedure of choosing feature fingerprint for a superblock.

to the Broder’s theory [31], Boafft selects the Min-Hash
as the representative fingerprint of the segment. After the
completion of the sampling of all segments in a superblock,
the Boafft organizes the selected representative fingerprints of
all segments into a characteristic set, and takes the set as the
feature fingerprint of the superblock.

The EMC’s Cluster Deduplication determines the routing
path by adopting simple stateless routing or global search,
and system deduplication ratio and throughput will be best
when the superblock size is 1MB. However, in cloud storage
environments, for these online compression and deduplica-
tion systems, forwarding small data blocks consumes a large
amount of network resources, and in turn increases systems
response time and lowers I/O throughput seriously. Therefore,
we redefine the size of a superblock, and sample according to
the similarity-based theory to ensure highly efficient dedupli-
cation within the data server and satisfy cloud storage’s fast
response requirement better.

4.3 Stateful Data Routing

Boafft uses the stateful routing algorithm based on data
similarity. When storing a data superblock, Boafft sends the
feature fingerprint of this superblock to every data server,
gets the similarity values of the superblock with the data
stored in each data server, and chooses the best matched data
server according to similarity values and storage utilization of
data servers. Consequently, Boafft can ensure comparatively
high deduplication ratio and achieve load balance among data
servers.

Each data server maintains a similarity index table, which is
used to store the characteristic fingerprints of the superblocks
in data containers. When storing a superblock in an open
container, the characteristic fingerprint of that superblock will
be loaded into similarity index as the container’s representative
characteristic fingerprint. The similarity index can be loaded
into memory. A client sends a superblock’s characteristic
fingerprint to all data servers. Each data server compares
the received fingerprint with the similarity index table in
memory to get the hit number of the characteristic fingerprints.
According to Border theory, the equal Min-Hash of two sets
means that the two sets have high similarity. Therefore, a
superblock’s hit number in a data server represents that the
value of similarity the superblock with the corresponding data
server. If the hit number in a data server is large, we believe
that the data stored in the node have a high similarity with the
superblock.

www.manaraa.com

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

We determine the final routing address on the basis of
a reference value v;(v; = h;/u;). It is a comprehensive
reflection of similar characteristic fingerprint’s hit number and
the storage utilization of a data server. In this equation, h;
is the hit number of characteristic fingerprints in data server
i, and wu; is the percentage of the storage capacity of data
server ¢ that is be used. As we can see, when h; is great, the
reference value v; is great as well, which means selecting such
a node ¢ will have a good effect on deduplication ratio. The
large value wu; will lead to small reference value v;, which
indicates that the storage utilization of this server has been
significantly higher than the average, so we should decrease
the probability of selecting node 7. Therefore, we can maintain
the balance among nodes’ storage utilization to some extent in
the premise of not decaying the deduplication ratio. It should
be noted that it also works well for a heterogeneous system
with data servers having different storage capabilities.

4.4 Description of Data Routing Algorithm

Algorithm 1 shows the pseudo code of local similarity routing
algorithm. (1) First, a client partitions the incoming data
stream into multiple superblocks, and selects representative
fingerprints for it (lines 1-3). (2) The client sends the rep-
resentative fingerprints of the superblock to all data servers,
and collects the numbers of fingerprint hits & from data
servers (lines 4-7). (3) The client calculates each data server’s
reference value v. The data server with the greatest reference
value is the ideal one (lines13-18). (4) If reference values v
of all data servers are zero, the client selects one randomly,
from the ones whose storage utilization is the lowest, as the
routing address of the superblock.

Local similarity routing algorithm is based on data locality
and data similarity, we take superblock as routing granularity
and redefine superblock’s organization to meet the demands
of the performance of big data’s storage in cloud storage.
In our implementation, we do logic partition on superblock,
select similar characteristic fingerprint locally, and get the data
distribution of each node to select the best deduplication node
according to stateful data routing algorithm. Meanwhile, to
maintain the balance of system storage, we design the routing
reference value of each node according to node’s current
storage status, and the best routing address is determined by
the value of this reference value.

5 LocAL DEDUPLICATION WITHIN A DATA
SERVER

In this section, we describe how a data server works when
a data read/write request arrives. Especially, we deliberate on
how it performs data deduplication and data regeneration.

5.1

A data server deduplicates locally for the incoming data.
Figure 4 shows the process of deduplication in a data server. In
ardatarserver; thread DataXceiveriisiresponsible for receiving
and processing the read/write requests from client. Once
DataXceiver receive the write request, the data server will

The Procedure of Data Deduplication

Algorithm 1 Local similarity routing algorithm.

Input:
s: the superblock to be routed.
Qutput:
id: the ID of data server selected.
1: split superblock s into k segments;
2: fingerprint f; < min hash of Segment 7, (0 < i < k);
3: representative fingerprint set Sy < {fo, f1,..., fs—1};
4: for each data server D; do
5: connect data server D; through RPC;
6: c; < hits_from_similarity_index(D;, Sy);
7: end for
8: hit count set C' < {cp,c1, ..., Cn_1};
9: if VCj eC, cj = 0 then
10: id < min_used_node();
11: return id
12: else
13: for each data server D; do
14: u; 4 storage_usage(D);
15: v; < compute_value (D, ¢;, uj);
16: end for
17: value set V' < {vg,v1, ..., un—_1};
18: id < m, if v, is max(V);
19: return id;
20: end if

I SuperBlock
DataXceiver
Thread Y Y Y

BlockReceiver
Thread

Get Match Container
List

\ Similarity Indexf \

Write Request

|| Charateristic Fp
Chunk Fp <__LRU Container Cache
Chunk data l

Hit

Hot Index \ \

Miss;

Query Sub-set of Fp
Index

. “a

__—"Chunk Fp ™~
“~_Matching_~

Match——————| Store Block Meta

Fig. 4: The procedure of data deduplication in a data server.

> ——Mismatch—| Store in Container | ———#=

Container

start thread BlockReceiver to receive and store data. The
deduplication engine also works in the BlockReceiver thread.

First of all, a data server receives superblock’s characteristic
fingerprints and metadata, determines the matched data con-
tainer by querying Hot Index and similarity index table. A I/O
read is required since the container is stored in disk. We use
the LRU container cache to take a direct match, which can
decrease the number of disk I/O operations to some extent.
After organizing the determined container into index subsets,
Boafft can search the index for the superblock. If matched,
there is no need to store the original data. Otherwise, Boafft

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 7

I SuperBlock_Data

DataXceiver
thread

BlockSender
thread

Read request
SuperBlock data
Block Meta reorganization
location

l
I I
I |
I I
I |
I I
| |
I I
I |
I I
I |
I I
I |
I
| |
I I
! Disk data read I

>

} Load Block Meta 7| according to Block Meta }
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| |
I I
I I
I I

Block Meta

Chunk_1
meta

Chunk_2
meta

Chunk_m
meta

AN
AN
N
N\

Hash

‘ CID Logic-offset|Physic-offset

length ‘

Containers

Fig. 5: The procedure of data reorganization in a data server.

selects an open container to store the remaining data. Finally,
Boafft writes every chunk’s storage information into the disk.

After deduplicating all the chunks in a superblock, Boafft
then writes the remained data into the container at once.
Compared with the method of writing deduplicated chunk one
by one, it can reduce the number of I/O operations and improve
the data server throughput when receiving data.

Another important aspect is the maintenance of index in
the process of deduplication. Index update can be divided into
three parts:

o Update of index in cache, the update of LRU container
cache is based on data server’s read/write requests and
the update of cache is in a way of LRU.

o Update of similarity index table, after storing the con-
tainer, we need select a characteristic fingerprint from
superblocks in the container, and update it to the similar-
ity index table for the later use of querying and matching
of similar fingerprint.

o Update of Hot Index table, we update the Hot Index
according to the access frequency of chunk’s fingerprint,
and the chunk stored in a container of the LRU container
cache.

5.2 The Procedure of Data Reorganization

When reading a file, a client sends a request to the metadata
server for the file metadata. Then, the metadata server returns
the data server address of the superblock and the superblock
ID to the client. The client establishes a connection with
the data server, by which the client reads the corresponding
superblock. To handle the read request from a client, a data
server reorganizes the data content of the superblock, and
returns the whole data to the client.

Figure 5 shows the process of superblock reorganization
in data server. When the DataXceiver thread receives read
requests, the system starts the BlockSender thread, which reads
and sends the requested superblock. In more detail, Block-
Sender first positionsrthe physicalvaddress of the superblock
metadata, and loads the superblock ‘metadata. BlockSender
then reorganizes the superblock according to the superblock

metadata. Finally, BlockSender sends the reorganized su-
perblock to the client.

When a data server performs local read operations, if the
chunk to be read next is not the data but the address of the
data, it will cause random disk read. That is, the read of a
chunk will across some files. To eliminate the bottleneck of
random disk reads, Boafft performs data deduplication only
among some similar containers. In this way, there will be not
too many I/O operations and will not open many files for data
reorganization, which will decrease the possibility of random
reads greatly.

5.3 Updating Hot Data Index

On the basis of LRU cache, Boafft uses Hot Index based on the
access frequency of fingerprints to improve the deduplication
ratio within a single node. With the adaption of Hot Index,
when newly coming superblock was not dedupliciated in the
similar containers, we can turn to the Hot Index for a second
deduplication. In this cache, we set the frequency of the
fingerprint in the container when match the fingerprint in the
cache, update the Hot Index. Algorithm 2 shows the pseudo
code of Hot Index’s update.

Selecting the match container by similar fingerprint cannot
get a good deduplication result, since the similar fingerprint
is not a good representation of the container’s data char-
acteristics. And the feature of data locality will gather the
duplicate data, which promise a good performance for system’s
deduplication. Consider the situation that some fingerprints of
a container being continuously hit, combined with the data
locality, there is no doubt that the possibility of the other data
in the container that detected as duplication data will increase.

Algorithm 2 Hot Index update algorithm.

Input:

c: the incoming chunk;
Output:

the HotIndex.

[: data container cache list.

1: h « Iru_get_cache(l, ¢);

2: if h = NULL then

3: delete_fingerprint(HotIndex, c);
4: else

5: update_ref_count(l, c¢);

6: T < now();

7. if T - lastupTime(h) > INTERVAL then
8: lastupTime(h) < T

9: sort(l);

10: update(HotIndex, [);

11: end if

12: end if

6 EXPERIMENTAL EVALUATION
6.1

By revising the source code of widely-used Hadoop’s distribut-
ed file system (HDFS), we implemented the Boafft prototype.
Here we conclude the main modifications on HDFS as follows.

Implementation and System Settings

www.manaraa.com

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

item configuration

CPU Intel Xeon E5-2620@2.00GHz
Memory 32GB

Disk 1TB x 2
Network Intel Gigabit 100Mbps

Operating system Ubuntu 12.04 64 bit
Kernel Linux 3.5.0-23-generic
Operating environment Jdk1.7

TABLE 1: Configuration of the Machines.

o In a client, we revised the original data storage code,
and implemented functions of data partition, fingerprint
calculation, and data routing in the process of data
storage.

e In the metadata server, we retained the metadata and
cluster managements, and replaced the network distance
perception routing algorithm with our similarity-based
data routing algorithm.

o In a data server, we modified the organization of data
storage, adding deduplication engine and data reorga-
nization engine, LRU cache, and Hot Index based on
data locality and access frequency. Use Berkeley DB for
persistent storage, such as a fingerprint similarity index
table (Similarity Index) and other metadata.

We used 3 servers to build up our cluster environment,
each server’s configurations is shown in Table 1. We test the
effect of deduplication in multiple nodes by building virtual
machines in physical machines to simulate it. In a simulated
environment, we start multiple processes to simulate large
scale cluster environment in each machine.

6.2 Evaluation Metrics and Data Sets

We use deduplication ratio, relative deduplication ratio, dedu-
plicaiton performance, deduplicaiotn throughput, and cluster
storage balance to analyze and evaluate cluster deduplication
system. Deduplication ratio (DR) is the ratio of logical to
physical size of the data. Relative deduplication ratio (RDR)
is the ratio of DR obtained by similarity matching within a
node to that of DRs get by globally matching. Deduplication
throughput (DT) is the ratio of the size of original data
with the time for uploading data. Deduplicaition performance
(DP) is the size of data that deleted by deduplication per
unit time. Cluster storage balance (CSB) is the variance of
nodes’ storage resource utilization, which is used to test cluster
storage balance.

Table 2 shows the datasets used by our experiments. Dataset
1 and Dataset 2 are real datasets, whose sources are the backup
data from the web server of the department of computer
science of FIU and its mail server [42]. Dataset 3 is the vdi
images of 5 Linux virtual machines in our lab. The deduplica-
tion ratio (DRs) in Table 2 is under the circumstance of 4KB
block size and global search in a single node. Among them,
DRsrof Dataset:3rare2:06rand 2:36:byusing FSP (Fixed-sized
partitioning) [26] and CDC (Content-defined chunking)[15],
respectively.

Dataset Size DRs
1 ‘Web Dataset 52GB 2.25
2 | Mail Dataset | 247GB 491
3 VM Dataset 159GB | 2.06/2.36

TABLE 2: Description of data sets.

6.3 Micro Benchmarks
6.3.1 Partitioning of SuperBlock

In our experiments, we partition the data stream into chunks
in the client, which is a widely used granularity today. The
chunk size is 4KB in FSP. While the average size of chunk
is 4KB, and the slide window is 48 bytes in CDC. Besides,
we set the maximum size of chunk to 8KB, the minimum to
2KB. Our experiments show that different container sizes in
data servers have little impact on the deduplication ratio. We
set the container size to a fixed value 16MB based on the three
reasons.

o The fixed container size makes allocation and dealloca-
tion of containers easier.

o The implementation of Boafft is based on HDFS, which
is friendly with large chunks.

o The large granularity of a container write achieves high
I/O throughput.

The goal of our first set of Micro benchmarks is to test the
size of superblock and the number of superblock’s segments
these two factors’ effects on deplication ratio and deduplica-
tion throughput. Since there is no data routing overhead in a
single node, the number of segment is the main factor that
affects deduplication ratio. Henceforth, We test the dedupli-
cation ratio by setting different superblock sizes and different
segment numbers in each case.

As shown in Figure 6, for a certain size of superblock,
the relative deduplication ratio is improving along with the
increase of the number of segments. For different size of
superblock, the deduplicaiotn ratio keeps steady when the
segment number reaches to a certain value, which we call
superblock’s best number of segments. This is because the
more the number of segments is, the higher the sample
frequency of fingerprints is, and the number of containers
that need to be compared will increase as well. Moreover,
the similarity index of Hash Map will occupy more memory.
That is, the increased number of segments do not improve the
deduplication ratio but cost more memory. As we can see from
the experiments, the best numbers of segments for superblocks
with different sizes are — 4 for 1MB, 8 for 2MB and 4MB,
16 for 8MB, 32 for 16MB, and 64 for 32MB, respectively.
In other words, we can divide a superblock into some 512KB
segments on average.

Figure 7 shows the effects of different superblock sizes
on deduplication throughput. We divided a given size of
superblock into its best number of segments. As shown in
the figure, the deduplication throughput increases gradually
along with the increase of the superblock size. The reason
for this increase is that the upload of larger superblocks
needs to load and match fingerprints of similar containers
for fewer times, which results in lower overheads. However,
when the superblock size goes beyond a value, the number of

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 9

78 -

76 %
—_ 2 d
S 74
g 7
E’ 70 -
=T 68
-

g 66 —

E 64 SuperBlock
2

= 62 —u— IMB
§ 60 - —e—2MB
2 58 —A—4MB
£ 564 —+—8MB
E o] —&— 16MB
3

& / —x—32MB

524 +

50 =— T T T T T T T T
1 2 4 8 16 32 64 128 256

Segment Number

Fig. 6: The impact of superblock size and segment number on dedup ratio.

25

20

DT(Deduplication Thoughtput MB/s)

IMB(4) 2MB(8) 4MB(8) SMB(16) 16MB(32) 32MB(64)

SuperBlock Size and Best Selected Segment Number

Fig. 7: The impact of superblock size on deduplication throughput.

characteristic fingerprints that a data server needs to compare
is large. The data server receiving a superblock will performs
a lot of disk I/Os, and in turn brings a negative impact on
system performance. On the other hand, with the increase of
the superblock size, although deduplication throughput will
increase to some extent, the deduplication ratio in a large
scale cluster is low. Therefore, we measure the deduplication
performance in the following by choosing the superblock size
between 4MB and 16MB.

6.3.2 Impact of Hot Fingerprint Cache

When a data server receives the routing data, it only loads the
similar characteristic fingerprint of the container into the Hash
to represent the storage information of the container. On the
basis of data locality and access frequency, we designed Hot
Index to further improve the deduplication ratio within a data
Server.

Figure 6 shows the effects of the different size of superblock
and the best number of segments on system deduplication
ratio. In Figure 8, we can see a 5-10% improvement of RDR
afterrthevadaptionrof "HotrIndexi Thevexperiment result also
show that there exits spatial locality and temporal locality
among data.

869 [Boafft
84 4 V4 Boafft + Hot

M7

Relative Deduplication Ratio (100%)
S
L

IMB(4) 2MB(8) 4MB(8) 8MB(16) 16MB(32) 32MB(64)

SuperBlock Size and Best Seclected Segment Number

Fig. 8: The impact of hot fingerprint to dedup ratio.

6.4 Macro Benchmarks
6.4.1 Deduplication Ratio

We conducted our experiments in cluster by setting the size of
superblock to 8MB, and constituting the scale of the cluster
to 1 128 respect, and compared with these systems based on
EMC'’s Stateful and Stateless routing algorithms. As we can
see from Figure 9, the testing results of the three datasets
have the same change rule, and Boafft’s deduplication ratio
can maintain between EMCStateful and EMCStateless. When
the number of node is one, the RDR is always equal to 1.
RDR of Boafft, EMCStateless, and EMCStateful is decreasing
along with the increase of node. The above result must exits
since the increase of available nodes for storage and the
difference of data distribution. EMCStateless uses stateless
routing algorithm, so its deduplication ratio decreases sharply.
When the number of node in the cluster reached to 128, we
can only get a about 65% RDR of that within a single node.
Hence, this stateless algorithm is not feasible in large scale
cluster.

For an EMCStateful cluster with 128 nodes, its RDR can
reach to 80-90%. This way of global stateful data routing
can guarantee system a relatively high deduplication ratio.
Although Boafft do not have the high deduplication ratio
as EMCStateful, its deduplication ratio did not fall fast as
EMCStateless. And Boafft’s dediplication ratio maintained at
around 80%, when the cluster has 128 nodes. Above all, in
large scale cluster of deduplication system that is based on
cloud storage, the local similar routing algorithm applied in
Boafft can get a good RDR to some extent.

The EMCStateful has a good performance in deduplication
ratio, but since the best storage node was decided by matching
all indexes of the node, the overhead of transmitting fingerprint
is too large. In addition, the overhead of global match within
a node is its main bottleneck.

6.4.2 System Performance

Figure 10 and Figure 11 shows the experiments of the dedu-
plication throughput and system performance of Boafft, EM-
CStateful and EMCStateless under different scale of cluster.
EMCStateless has high deduplication throughput and system
performance. The main reason lies in it does not consume any

www.manaraa.com

10
110 -
—M— Boafft

105 —®— EMCStateless
;\? 00 @ —A— EMCStateful
=3 —
2 \‘
g] m A N
- - —_—
£ 90 o\\-\ A— A A a
£ AN —a
-g 85+ X N . | n ___—n
= 80 e
] e
2 o
2 704
=
& 654

60 T T T T T T T T

1 2 4 8 16 32 64 128
Nodes
(a) With the web dataset
110 -
—Ml— Boafft
105 4 —@— EMCStateless
100 —A— EMCStateful

95

90

85

80

754

70 4

Relative Deduplication Ratio (100%)

65

60 —— T T T T T T T
1 2 4 8 16 32 64 128

Nodes
(b) With the mail dataset

110

—M— Boafft

105 —@— EMCStateless
—A— EMCStateful

100 &

95

90

85

80

754

70

Relative Deduplication Ratio (100%)

65 -

60 T T T T T T T T
1 2 4 8 16 32 64 128

Nodes

(c) Under the vin workload

Fig. 9: Relative deduplication ratio with different system sizes.

network transmission overheads in the process of data routing,
even if the scale of the cluster is large.

Boafft and EMCStateful implemented stateful data routing,
so their storage performance is decreasing along with the in-
crease of cluster’s number of node. However, Boafft’s storage
performance is better than EMCStateful with the increase of
nodes. This is because the amount of matched information
transmitted by Boafft’s similar match is 1/128 of that by
EMCStateful, and the memory usage of fingerprint matching
indata server is 17128 of "that in" EMCStateful. Therefore,
although Boafft does not achieve high deduplication ratio
as EMCStateful, ‘its storage performance is better and the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

Deduplication Throughput (MB/s) Deduplication Throughput (MB/s)

Deduplication Throughput (MB/s)

40

40

354

30

254

204

—e—_
—o—
o 0o o
B -
\lsl .
A T
\A \
]
A \.
—u— Boafft \A \-
—®— EMCStateless
—A— EMCStateful \ A
\A
T T T T T T T
2 4 8 16 32 64 128
Nodes
(a) With the web dataset
e
— o o ° o N
*—o
—Hm— Boafft
—®— EMCStateless
—A— EMCStateful
l&‘\
[]
A>l\
n]
\ \.
A\ T—a
A_
~a__
A
T T T T T T T
2 4 8 16 32 64 128
Nodes
(b) With the mail dataset
—H— Boafft
—®— EMCStateless
~o. —A— EMCStatefull
—e o 4
®
—
1 4 - -\. ° o
\.
) — \
— A\ .
\A \
\ -
A\
A
A
T T T T T T T
2 4 8 16 32 64 128

Nodes

(c) Under the vim workload

Fig. 10: system throughput with different system sizes.

consumed memory is less.

6.4.3 Load Balance among data servers

The balance of storage utilization is a main aspect of evaluat-
ing a distributed system. In different scale of cluster, we can
get each node’s disk usage after the upload of datasets and
get the cluster’s status of storage balance by the calculation

of CSB.

Figure 12 shows the CSB results in our experiments. With
the increase of cluster’s node, the deviation of storage increas-
es gradually. From the above observation, we can see that the
storage deviation of each node in Boafft is increased under the
condition of the cluster’s scale is large. However, CSB tend

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 11

40 -

—Hm— Boafft
_ 35 —®— EMCStateless
2 —A— EMCStateful
£ 304
F
g 254
<
E
1
S 20 @
o4 e 2
A A 4
= 15 S e -
[[e — o
£ L B — —— o
I A — ®
S N
= 10+ L []
% \A\x \.
2 5+ ~A_ B
N S
0 T T T T T T T T
1 2 4 8 16 32 64 128
Nodes
(a) With the web dataset
40 —H— Boafft
- —®— EMCStateless
2 %7 —A— EMCStateful
€] —e o _e_
8 - ° °
g 25 o— °
s _ A
T2 AT T
= -— A
S 154 T~ ~
=]] A
s e m —
=, 10 ~a —_
= ~]
1 ™~
8 51 A
A,
0 T T T T T T T T
1 2 4 8 16 32 64 128
Nodes
(b) With the mail dataset
40 4
35 —Hm— Boafft
7 —®— EMCStateless
Q
= —A— EMCStatefull
= 30 4
g
£ 25
<
£
I
<
o
D
-
=
2
]
S
= —e
S
=
=
3
=]
—A

Nodes

(c) Under the vmm workload

Fig. 11: system performance with different system sizes.

to increase slowly from the trend, which means the routing
algorithm of Boafft did not have very negative impact on
system storage balance. This is because our routing algorithm
takes the status of storage into consideration and decides the
data routing address dynamically online.

6.4.4 /O Bandwith

Finally, we test the read/write bandwidth of Boafft, EMCState-
less and EMCStateful to analysis their system overhead in
different scale'of cluster: Figurer13'showsithe write bandwidth.
The write performance of the system with deduplication was
significantly lower than the original Hadoop system.

0.020

0.015

0.010

0.005

0.000

Cluster Storage Balance
u

-0.005

-0.010 T T T T T T T T
1 2 4 8 16 32 64 128

Nodes
Fig. 12: The deviation of storage utilization with the increase of cluster nodes.

100

> —B— Boafft
90 4 N —®— EMCStateless
5] . N _ —A— EMCStateful
> . —4&— Hadoop
2 704 —
2 * -
S 60 e
£ 8
?E 50 T~
Z *
£ 40+
A
£ 304
-
Z 20
10 4

Nodes

Fig. 13: The write bandwidth of cluster storage system.

With the increase of the scale of cluster, system’s write
bandwidth decreased. The above phenomenon results from the
errors caused by the simulation of large-scale clusters on a
single physical machine. However, as we can see from the
experiment results, it is obvious that the write bandwidth of
Boafft is larger than EMCStateful, because Boafft’s memory
cost is only 1/128 of that in EMCStateful.

Figure 14 shows the read bandwidth of four storage cluster
systems. First, Hodoop’s read bandwidth is greater than the
other with cluster deduplication. This is because Hadoop read
file sequently, while the addition of deduplication change
sequential storage of data on disk into random, there exits
random read in read process. Second, Boafft’s read bandwidth
is larger than EMCStateful and EMCstateless in different scale
of cluster. Boafft’s deduplication is based on a small amount
of similar containers, which saves the overheads of comparing
too much containers’ fingerprints.

7 CONCLUSIONS

In this paper, we present Boafft, a cloud storage system
with distributed deduplication. It achieves scalable throughput
and capacity using multiple storage nodes to deduplicate in
parallel, with a minimal loss of deduplication ratio. First,
Boafft adopts efficient data routing algorithm based on data
similarity, which not only reduce the overhead of network

www.manaraa.com

100

—Ml— Boafft

90+ —@— EMCStateless

<0 J ¢ —A— EMCStateful
“\\ —4— Hadoop
@ 70+ Te_
-] ~——
2 604
=
=
T 50
=
T w0
£ .
=]
'g 304
&
20 4
10 4
0= T T T T T T T
1 2 4 8 16 32 64 128
Nodes

Fig. 14: The read bandwidth of cluster storage system.

bandwidth, but can also calculate the storage location of data
fast. Second, each data server maintains a similarity index
table in memory, which can be used to deduplicate data
partially, and a large number of disk random reads/writes can
be avoided. Third, we improve the data deduplication ratio in
single node with the help of cache container of hot fingerprint
based on access frequency.

We implemented the prototype system of Boafft by revising
the source code of widely-used Hadoop distributed file system
(i.e., HDFS). Experiment results show that Boafft can provide
a relatively high deduplication ratio, and compared with EM-
CStateful, its network overheads is lower, memory usage can
reduced to 1/128 of the EMCStateful, storage utilization and
read/write bandwidth is higher, and load balance is also good.

ACKNOWLEDGMENTS

We are grateful to Zhiran Li for providing helpful com-
ments and assistance with our experimentation. This work
was supported by the National Natural Science Foundation
of China under Grants 61170008, and 61272055, the National
Grand Fundamental Research 973 Program of China under
Grant No. 2014CB340402, and the National High Technology
Research and Development Program of China under Grant
2013AA01A210. The work was also support in part by the
National Science Foundation grant CNS 1229316.

REFERENCES
(1]
(2]

Ghemawat S, Gobioff H, Leung S T. The Google file system[C] ACM
SIGOPS Operating Systems Review. ACM, 2003, 37(5): 29-43.
Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file
system[C] Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on. IEEE, 2010: 1-10.

Ceph. http://ceph.com/ceph-storage/file-system/

Nurmi D, Wolski R, Grzegorczyk C, et al. The eucalyptus open-source
cloud-computing system[C] Cluster Computing and the Grid, 2009.
CCGRID’09. 9th IEEE/ACM International Symposium on. IEEE, 2009:
124-131.

Gluster File System. http://www.gluster.org/community/
documentation/index.php

Gantz J, Reinsel D. The digital universe decadetare you ready? IDC
White Paper, May 2010[J]. 2011.

Biggar H. Experiencing data de-duplication: Improving efficiency and
reducing capacity requirements. White Paper, (the Enterprise Strategy
Group, Feb. 2007[J]. 2012.

(3]
(4]

(51
(6]
(71

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 61, NO. 11, JANUARY 2015

(8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]
[29]

(30]

[31]

(32]

[33]

[34]

Jas A, Ghosh-Dastidar J, Ng M E, et al. An efficient test vector
compression scheme using selective Huffman coding[J]. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on Computers, 2003, 22(6): 797-806.

End III J H. Hardware-based, LZW data compression co-processor: U.S.
Patent 6,624,762[P]. 2003-9-23.

Che H, Wang Z, Zheng K, et al. DRES: Dynamic range encoding scheme
for tcam coprocessors[J]. IEEE Transactions on Computers, 2008, 57(7):
902-915.

Deutsch L P. DEFLATE compressed data format specification version
1.3[J]. 1996.

Jin K, Miller E L. The effectiveness of deduplication on virtual machine
disk images[C] Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference. ACM, 2009: 7.

Adya A, Bolosky W J, Castro M, et al. FARSITE: Federated, available,
and reliable storage for an incompletely trusted environment[J]. ACM
SIGOPS Operating Systems Review, 2002, 36(SI): 1-14.

EMC Centera, content addressed storage, product description.
http://www.emc.com/pdf/products/centera/centera_guide.pdf, 2002.
Meister D, Brinkmann A. Multi-level comparison of data deduplication
in a backup scenario[C] The Israeli Experimental Systems Conference.
ACM, 2009: 8.

Kubiatowicz J, Bindel D, Chen Y, et al. Oceanstore: An architecture for
global-scale persistent storage[J]. ACM Sigplan Notices, 2000, 35(11):
190-201.

Quinlan S, Dorward S. Venti: A New Approach to Archival Stor-
age[C]//FAST. 2002, 2: 89-101.

Rabin M O. Fingerprinting by Random Polynomials. Technical Report,
No. TR-15-81, Center for Research in Computing Technology, Harvard
University, Cambridge, MA, USA, 1981.

Muthitacharoen A, Chen B, Mazieres D. A low-bandwidth network
file system[C] ACM SIGOPS Operating Systems Review. ACM, 2001,
35(5): 174-187.

Cox L P, Murray C D, Noble B D. Pastiche: Making backup cheap
and easy[J]. ACM SIGOPS Operating Systems Review, 2002, 36(SI):
285-298.

Bhagwat D, Eshghi K, Long D D E, et al. Extreme binning: Scalable,
parallel deduplication for chunk-based file backup[C] Modeling, Analy-
sis & Simulation of Computer and Telecommunication Systems, 2009.
MASCOTS’09. IEEE International Symposium on. IEEE, 2009: 1-9.
Dong W, Douglis F, Li K, et al. Tradeoffs in Scalable Data Routing for
Deduplication Clusters[C] FAST. 2011: 15-29.

You L L, Pollack K T, Long D D E. Deep Store: An archival storage sys-
tem architecture[C] Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on. IEEE, 2005: 804-815.

Eshghi K, Tang H K. A framework for analyzing and improving content-
based chunking algorithms[J]. Hewlett-Packard Labs Technical Report
TR, 2005, 30: 2005.

Liu C, Lu Y, Shi C, et al. ADMAD: Application-Driven Metadata
Aware De-duplication Archival Storage System[C]Storage Network Ar-
chitecture and Parallel 1/0s, 2008. SNAPI’08. Fifth IEEE International
Workshop on. IEEE, 2008: 29-35.

Bobbarjung D R, Jagannathan S, Dubnicki C. Improving duplicate
elimination in storage systems[J]. ACM Transactions on Storage (TOS),
2006, 2(4): 424-448.

Kruus E, Ungureanu C, Dubnicki C. Bimodal content defined chunk-
ing for backup streams [C] Proc of the USENIX FASTI10, Brekeley,
CA:USENIX, 2010: 239-252

Zhu B, Li K, Patterson R H. Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System[C] Fast. 2008, 8: 1-14.

Bloom B H. Space/time trade-offs in hash coding with allowable
errors[J]. Communications of the ACM, 1970, 13(7): 422-426.
Lillibridge M, Eshghi K, Bhagwat D, et al. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality[C] Fast. 2009, 9: 111-
123.

Broder A Z. On the resemblance and containment of docu-
ments[C]//Compression and Complexity of Sequences 1997. Proceed-
ings. IEEE, 1997: 21-29.

Debnath B, Sengupta S, Li J. ChunkStash: speeding up inline storage
deduplication using flash memory[C] Proceedings of the 2010 USENIX
conference on USENIX annual technical conference. USENIX Associ-
ation, 2010: 16-16.

EMC Data Domain Global Deduplication Array,
http://www.datadomain.com/products/global-deduplication-array.html
Dubnicki C, Gryz L, Heldt L, et al. HYDRAstor: A Scalable Secondary
Storage[C] FAST. 2009, 9: 197-210.

www.manaraa.com

LUO ET AL. : BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 13

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

Frey D, Kermarrec, A-M, Kloudas, K. Probabilistic Deduplication
for Cluster-based Storage Systems[C] Proceedings of the Third ACM
Symposium on Cloud Computing. 2012: 17:1-17:14.

Xia W, Jiang, H, Feng D, Hua Y. SiLo: A Similarity-locality Based
Near-exact Deduplication Scheme with Low RAM Overhead and High
Throughput[C] ATC. 2011.

Fu Y, Jiang H, Xiao, N. A Scalable Inline Cluster Deduplication Frame-
work for Big Data Protection[C] Proceedings of the 13th International
Middleware Conference. 2012: 354-373.

Yang T, Jiang H, Feng D, Niu, Z, Zhou K, Wan Y. DEBAR: A
scalable high-performance de-duplication storage system for backup and
archiving[C] IPDPS. IEEE, 2010.

Yang T, Feng D, Niu Z, Wan Y. Scalable high performance deduplication
backup via hash join[J]. Journal of Zhejiang University—Science, 2010,
11: 1-13.

Real R, Vargas J M. The probabilistic basis of Jaccard’s index of
similarity[J]. Systematic biology, 1996: 380-385.

Broder A Z, Charikar M, Frieze A M, et al. Min-wise independent
permutations[J]. Journal of Computer and System Sciences, 2000, 60(3):
630-659.

FIU IODedup.Traces, http://iotta.snia.org/traces/391

Shengmei Luo is now a PhD candidate at Ts-
inghua University. He received the bachelor's
and master's degrees in communication and
electronic from Harbin Institute of Technology
in 1994 and 1996 respectively. He joined ZTE
company in 1996, and his current research inter-
ests include big data, cloud computing, network
storage.

Guangyan Zhang is now an associate professor
in the Department of Computer Science and
Technology at Tsinghua University. He received
the bachelor’s and master’s degrees in computer
science from Jilin University in 2000 and 2003;
the doctor’s degree in computer science and
technology from Tsinghua University in 2008.
His current research interests include big data
computing, network storage, and distributed sys-
tems. He is a Professional Member of the ACM.

Chengwen Wu is now a master student in the
Department of Computer Science and Technolo-
gy at Tsinghua University. He received the bach-
elor’s degree in computer science from Beijing
University of Posts and Telecommunications in
2014. His current research interest is in big data
processing and network storage.

Samee U. Khan received a BS degree in 1999
from Ghulam Ishaq Khan Institute of Engineer-
ing Sciences and Technology, Topi, Pakistan,
and a PhD in 2007 from the University of Texas,
Arlington, TX, USA. Currently, he is Associate
Professor of Electrical and Computer Engineer-
ing at the North Dakota State University, Fargo,
ND, USA. Prof. Khans research interests include
optimization, robustness, and security of: cloud,
grid, cluster and big data computing, social net-
works, wired and wireless networks, power sys-
tems, smart grids, and optical networks. His work has appeared in over
275 publications. He is on the editorial boards of leading journals, such
as |EEE Transactions on Computers, IEEE Access, IEEE Cloud Com-
puting Magazine, IEEE Communications Surveys and Tutorials, IEEE IT
Pro Magazine, Scalable Computing, Cluster Computing, Security and
Communication Networks, and International Journal of Communication
Systems. He is a Fellow of the Institution of Engineering and Technology
(IET, formerly IEE), and a Fellow of the British Computer Society (BCS).
He is a Senior Member of the IEEE.

Kegin Li is a SUNY Distinguished Professor
of computer science. His current research in-
terests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless communi-
cation networks, sensor networks, peer-to-peer
file sharing systems, mobile computing, service
computing, Internet of things and cyber-physical systems. He has pub-
lished over 320 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently
or has served on the editorial boards of IEEE Transactions on Paral-
lel and Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, Journal of Parallel and Distributed
Computing. He is an IEEE Fellow.

www.manaraa.com

